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Yes we solve F=ma in classical MD simulation

Molecular Dynamics

|.Assign velocities to all atoms
2. Calculate forces on all atoms

3. Use Newton’s second law to
calculate acceleration on each atom

F =ma
4. Calculate velocities for the
t+ AL next timestep
x(t + At) 5. Use change of velocities to get
v(t + At) coordinates for next timestep

6. Go to step 2.

But there are much more things that we should understand here!



In OpenMM,

The list of integrator implemented in OpenMM

In OpenMMtools

(https://lopenmmtools.readthedocs.io/en/stable/

integrators.html),

LangevinMiddleIntegrator

using Langevin dynamics, with the LFMiddle
discretization (J.

This is an Integrator which simulates a System LangevinIntegrator Integrates Langevin dynamics with a prescribed operator splitting.
LangevinIntegrator ) ' : A

using Lange\’m dynamlcs. VVVRIntegrator Create a velocity Verlet with velocity randomization (VWVR) integrator.

This iz an Integrator which simulates a System BAOABIntegrator Create a BAOAB integrator.

GeodesicBAOABIntegrator | Create a geodesic-BAOAB integrator.

MTSIntegrator

MTSIntegrator implements the rRESPA multiple
time step integration algorithm.

GHMCIntegrator Create a generalized hybrid Monte Carlo (GHMC) integrator.

MTSLangevinIntegrator

MTSLangevinIntegrator implements the BAOAB-
RESPA multiple time step algorithm for constant
temperature dyvnamics.

NonequilibriumLangevinIntegrator

Nonegquilibrium integrator mix-in.

AlchemicalNonequilibriumlLangevinIntegrator

Allows nonequilibrium switching based on force parame-

ters specified in alchemical_functions.

NoseHooverIntegrator

This is an Integrator which simulates a System
using one or more Nose Hoover chain thermostats,
using the “middle” leapfrog propagation algorithm
described in J.

PeriodicNonequilibriumIntegrator

Periodic nonequilibrium integrator where master al-
chemical parameter 1ambda is driven through a periodic

protocol:

ExternalPerturbationLangevinIntegrator

Create a LangevinSplitingIntegrator that accounts for ex-
ternal perturbations and tracks protocol work.

RPMDIntegrator

This iz an Integrator which simulates a System
using ring polymer molecular dynamies (RPMD).

MTSIntegrator

MTSIntegrator implements the rRESPA multiple time step in-
tegration algorithm.

VariableLangevinIntegrator

This iz an error controlled, variable time step
Integrator that simulates a System using Langevin
dynamics.

DummyIntegnator

Construct a dummy integrator that does nothing except up-
date call the force updates.

VariableVerletIntegrator

This iz an error controlled, variable time step
Integrator that simulates a System using the leap-
frog Verlet algorithm.

GradientDescentMinimizationIntegrator

Simple gradient descent minimizer implemented as an
integrator.

VelocityVerletIntegrator

Verlocity Verlet integrator.

VerletIntegrator

This is an Integrator which simulates a System
using the leap-frog Verlet algorithm.

AndersenVelocityVerletIntegrator

Velocity Verlet integrator with Andersen thermostat using
per-particle collisions (rather than massive collisions).

NoseHooverChainVelocityVerletIntegrator

Mosé-Hoover chain thermostat, using the reversible multi
time step velocity Verlet algorithm

MetropolisMonteCarloIntegrator

Metropolis Monte Carlo with Gaussian displacement trials.

HMCIntegrator

Hybrid Monte Carlo (HMC) integrator.




Basics of MD simulation

In classical mechanics, the equation of motion is integrated to generate the trajectory.

d (9L _0k . _ 0% . _ o
dt \ Or; 8r1~_' 3;0,3 '

Energy is conserved in classical mechanics!
By solving F=ma, we sample the microcanonical ensemble (constant E) forensemble averages.
dx a(x)0(H(x) — FE 1 [7
(a):f (O(H(x) ) _ f dt a(x¢) = a.
0

lim —

[dx6(H(x) —E) 75T

We need to sample the x_t in microcanonical ensemble, which we call it trajectory.(.dcd)

In here, we introduce the time discretization parameter dt, known as the time step.

Starting with the initial cond x_0, x_dt, x_2dt,x_3dt are generated by applying the integrator iteratively.

A= {(a) = % Za(xﬂm) = a.

n=1



Simple integration schemes

A discretization of the equations of motion can be obtained by Taylor expansion:

At? At? . 1
r;(t + At) = r;i(t) + At v;(t) + Sy f;(t) + T r;(t) + O(AtY)
At At? At? ,

vi(t + At) = vi(t) + — £i(t) + = Vi(t) + 8 vi(t) + O(Ath).

By the Euler algorithm, the trajectory is calculated according to:

At?
ri(t + At) = ri(t) + At vi(t) + 5 —fi(t) + O(At?)
At ,
vi(t + At) = vi(t) + — £i(t) + O(At?)
m;

WE DO NOT USE THIS, since this is not stable (neither time-reversible nor symplectic)

UIf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008



Simple integration schemes

A discretization of the equations of motion can be obtained by Taylor expansion:

At? At?

rit + Af) = i) + At vilt) + o— £i(t) + 7 Fi(t) + O(At)
2 3
vi(t 4+ At) = {)+%f()+%h()+i—fv,,,()+0(5.f)_

By the Verletalgorithm (1967), the trajectory is calculated according to:

At? N A3

21 3!

r; (f - ,ﬂ.f) = I‘i(f) — At Vi(ff) +

The updating equation for the positions and velocities are:

r;(t + At) = 2r;(t) — r;(t — At) + ?n:_z fi(t) + O(ﬁ.fﬁl)T
R ri(t + At) —r;(t — At) 3
vi(t) = N, + O(ﬂ.?‘ )

UIf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008
Phys. Rev. 1967, 159, 98.



Simple integration schemes

A discretization of the equations of motion can be obtained by Taylor expansion:

At? At? . 1
r;(t + At) = r;i(t) + At v;(t) + Sy f;(t) + T r;(t) + O(AtY)
At At? At? ,

vi(t + At) = vi(t) + — £i(t) + = Vi(t) + 8 vi(t) + O(Ath).

By the Leap-frog algorithm, the trajectory is calculated according to:

At At At

vit + =) = vi(t — —-) + — fi(?),

) ) i

The velocities are updated at half time steps and ‘leap’ ahead the positions as:

vi(t — %) + vi(At + %]

vi(t) = 5

UIf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008



Simple integration schemes

A discretization of the equations of motion can be obtained by Taylor expansion:

At? At? . 1
r;(t + At) = r;i(t) + At v;(t) + Sy f;(t) + T r;(t) + O(AtY)
At At? At? ,

‘Vt'(t + if} = V;;(:‘f) -+ ; fz'(t) + T vi(t) + T V;;(f) + @(ifl)

By the Velocity-Verletalgorithm (1982), the trajectory is calculated according to:

2
ri(t + At) = r;(t) + At v;(t) + &—?"_ fi(t) + O(A),

T
At

vi(t + Af) = v(t) + o— (£i(t) + £i(t + At)) + O(At?).

This is very stable and has become the perhaps most widely used integration algorithm.

The Velocity-Verletscheme is a symplectic integrator.

UIf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008
J. Chem. Phys. 1982, 76, 637-649.



What properties should integration algorithms satisfy?

1. Stability

B Energy conservation
B Symplecticity

B Time reversibility

2. Efficiency

B Maximum permissible time step
B Constraint algorithm

B Hydrogen mass repartitioning

B Multi-step integration

3. Accuracy

B Configurational sampling

B Dynamical properties

10



What properties should integration algorithms satisfy?

1. Stability
B Energy conservation
B Symplecticity

B Time reversibility

11



Classical time evolution operator and numerical integrators

It would be nice if we can derive the Verletintegration algorithm directly from the classical
mechanics such as Hamilton’s equation. Then ‘symplecticity’(the phase-space volume
preserving property)is guaranteed.

For the time evolution of any function a(x) of the phase space vector,
cla da . da .
da_ z {—dgﬂ in + i

: OH : OH
f (a3 - i ? - i
" Opa 0qa

da i da OH  da OH
dt dq, Op,  Op, Oq,

= {a,H}.

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023

12



Classical time evolution operator and numerical integrators

Let's define the Liouville operatorL as: iLa = {a,H}

T Z OH OH 0 da/dt = iLa
? OPa 0qa 5%- Opa a(x;) = e?uﬂ(xu)-

Lt
X; = e 'Xg.

We call the operator exp(iLt) as the classical propagator.

From now on, let’s split the Liouville operatorinto two:

il =il +iLo, P’
3N :
_ OH o
L= 2 Oy o b 0 *-
a=1 il = ——, ily = F(z)—,
. m Ox dp

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators

Let's define the Liouville operatorL as: iLa = {a,H}

T Z OH OH 0 da/dt = iLa
? OPa 0qa 5%- Opa a(x;) = e?uﬂ(xu)-

Lt
X; = e 'Xg.

We call the operator exp(iLt) as the classical propagator.

From now on, let’s split the Liouville operatorinto two:

il =il +iLo, P’
3N :
_ OH o
L= 2 Oy o b 0 *-
a=1 il = ——, ily = F(z)—,
. m Ox dp

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators

By the Trottertheorem, 75 — lim

P
[EBXEFeA,/PEBK.ZF}
P—oo

. . . . P
oilt [engm,er?lee?Lszﬂ L0 (P&t?')
Forthe Hamiltonian H = p*/2m+U ()

. At 0 0 At 0
exp(iLAt) = exp ( 5 F(.r)g) exp (&t——) exp (TF(T)d—p)

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023
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(

Classical time evolution operator and numerical integrators

x(At
p(At

O »p9 Al pn 2
) ~exp | F(m)ap exp &tm 5. ) ©XP 2F(::-:)ap

exp (%F(T)(}%) (;) B (p+‘;F(~1‘))

) T x+ AtE
exp (&tﬁi) = h
mOr) \p+4F@) ) \p+4F (z+At2)

ex e £T)—
"\2 p p+ %F (z+ AtE)

x+ 4L (p+ &LF(2)) )

(p—i— SF(z) + &LF (z+ 2L (p+ 5L F(2)))

T

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023
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Classical time evolution operator and numerical integrators

; £z
exp TF{T)()— |
- P P+ %F (;1? + L\t%)

m-l—%(p—%F{x)) )

(P+ (@) + FF (2 + 55 (p+ FF(2)))

A 2
x(At) = 2(0) + Atv(0) + 2; F(z(0))
A
o(A1) = v(0) + 5 [F(2(0)) + F(x(A0))

This is just the update stepin the Velocity Verletalgorithm!

Symplecticity is now guaranteed!

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators

N .2
For the N-particle systems: H — Z
i=1

U e ' ).
S +U(ry,...,rn),

s - 9
k= Zm1 3I‘i+ZFf.r

. Op;
1=

Again, we can splitthe Liouville operatorinto two: il = il + iLo,

p(A/2) = p(0) + S-F((0))

p=p+05%x At x F
At r=x+ At *p/m
w80 =20+ Xpaey WP /

m Recalculate the force

At p=p+ 0.5 At F.
p(At) = p(At/2) + —F( (Atl)).

.—l

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023
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Symplecticity

Q. Why symplecticity is good to be guaranteed?

A. Sympletic integrator has the important property that there exists a shadow Hamiltonian that
remains close to the true Hamiltonian and is exactly conserved by the algorithm.

Example: 1D Harmonic Oscillator z(At) = z(0) + &tpfr?) _ %&tﬁw?:}:(g)
H(x,p) = —2 — lmwzmg. mw? At
2m = 2 p(At) = p(0) — —g (x(0) + z(At)]
b A
2
I p L 99
> H(z.p; At) = . — MW
> (z, p; At) om(1 — w2AL2/4) =+ Qm T

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



What properties should integration algorithms satisfy?

2. Efficiency

B Maximum permissible time step
B Constraint algorithm

B Hydrogen mass repartitioning

B Multi-step integration

20



The maximum permissible time step

TABLE |I.
Characteristic Oscillation Periods of Atomic Motions in MD Simulations.?
f, | Period (fs)

Motion (kd mol ) (u nm?) Calc. Sim.
Bond stretch, H 400000 m=1u 10 10
Bond stretch, heavy atoms 500000 m=12u 30 20
Water libration — 0.0059 — 28
Water rotation — 0.0059 — 1300
Angle, H 375 0.010 32 20
Angle, heavy atoms 450 0.27 154 45
Angle —NH; group, C—N—H 375 0.010 32 22
Angle —NH5 group, H—N—H 750 0.010 23 13
Improper, planar 167 — — 28
Improper, tetrahedrical 335 — — 27
Dihedral, peptide bond 33 0.20 489 28
Dihedral, —NH5 group 3.8 0.023 489 89
Dihedral, OH group 1.3 0.0094 h3 43

#f_: force constant; |: moment of inertia, or atomic mass for bond stretching; cale.: calculated from eq. (1); sim.: highest frequency
significant peak in spectrum of angle respectively dihedral motion from simulation. An entry of “—" means not applicable, or not
determinable.

The maximum time step in simulation is limited by the fastest motions which invariably involve
hydrogen atoms, which is usually setto be 1 fS for usual simulation.

Some simulation techniques are further required to increase the maximum time step, but how?

J. Comp. Chem., 1999, 20, 8, 786-798. 21



The idea of constraint

Rigid distance (or angle, properangle, improperangle) constraints are used to increase the
integration step size from 1 fs to 2 fs.

The ideais to use the method of Lagrange multipliers.

o({r,}) =1Ir, —r,| — d,

We apply a constraint force to atoms m and n, which produces a combined displacements &
along the constraint algorithm such that o = 0 at the end of the time step.

This requires iteratively solving a system of nonlinear eauations (i.e. Newton iteration)

do,

N+l _ sN_ g1 N L=
f-) — l’j J g J”- a{_s)JI

There are many constraint algorithms in MD simulation package which differentiates with the
way to construct the jacobian matrix J and the way to perform the iteration.

List of algorithms: SHAKE, M-SHAKE, SHAPE, RATTLE, SETTLE, LINCS, P-LINCS,CCMA....

J. Chem. Theory Comput. 2010, 6, 434-437

22



Constraint algorithm implemented in MD simulation package

In OpenMM,

SETTLE forwater molecules only.

SHAKE forisolated clusters of one heavy atom with up to three hydrogens bonded toit.
CCMA for anything not handled by one of the above algorithms.

(LINCS is not implemented in OpenMM)

do,

- Bfﬁj

M =o"-Je" I,

Remark.

M-SHAKE constructs the jacobian matrix and then invert it, which is quite stable but high-cost.

LINCS circumvents the invertion of jacobian matrix by representing J(-1) as a power series, but for strongly
connected system, this series converges very slowly or even fail to converge.

SHAKE approximates J*(-1) using its upper triangle form for improved convergence at very little extra cost.
This method is very popular but hard to be implemented efficiently on parallel architectures.

SETTLE uses an analytical solution for rigid water molecules rather than solving it iteratively. But only
applicable to water molecules.

CCMA approximates J(-1) with a different matrix K(-1) that is easierto calculate on parallel architectures.

J. Chem. Theory Comput. 2010, 6, 434-437 23



Convergence issues on constraint algorithm

Cholesterolin MARTINI force field is a notorious molecule due to highly coupled constraints.

Applying LINCS algorithm with small LINCS Order and Iterations fails to be converged,
which causes a negative energy drift and subsequentlyto cooling.

Time step (fs)

LINCS Order
8 12 4 8 12 12 T (K)

4
14.8 6.3 22.3 4.9 2.3 0.6

13.0 2.9 1.6 4.6 2.3 0.3

w
)

[\
-

1.1 0.7 0.3 0.7 0.0 0.2

1 1 1 2 2 2 3
LINCS Iterations

(b)

| PC lipids

| CHOL

W PE lipids
PS lipids

W GM lipids

M SM lipids

W Other lipids
Water

Temperature [ K

i Together Separate

Such issue can be circumvented by additional incorporating the virtual sites in cholesterol.

Original
56.1 4R LR

AT [K]

30
it} 12.8 5.9
g 0.8 1.1

3.1
0.6

J. Phys. Chem. B 2021, 125, 9537-9546.
J. Chem. Theory Comput. 2023, 19, 1592-1601.

Optimized

O MNWEREOT

LINCS Order

24



dt=2fs is oftenused in simulating rigid models of water with constraint (SHAKE, SETTLE)

“Fastinternal vibrations are usually decoupled from rotational and translational motions?”

Ale) (keal/mol)

Shot time step is sometimes inevitable

| [ | I
301 A Translation A N
300 © Rotation o |
= 299 o -
S R N Thermostat T_ |
:%’/ 208 T @ @ ] -
&~ 297 - @ -
O
296 ]
(a) SVR o
295 .
| | | | | 1
00 05 10 15 2.0 25 30 3.5
ot (fs)
0.00 T [ T T
—0.06 - & SVR .
Zx
O Langevin
—0.10 - ES n
ES 0]
—0.15 — T —
’ )
g & o
—020— -
I | l 1 | 1
0.0 05 1.0 1.5 20 25 3.0 35
at (fs)

[ [ | I I
300 - 2 Translation N
299 |- © Rotation |
I N SR SR S
— 298 S o = Thermostat T' |
=297 o .
<
£ 296 - © s
B~
295 - o n
204 m
(b) Langevin e
293 ! | | I I L]
00 05 1.0 15 20 25 30 35
gt (fs)
| |
750 & st=05fs /,f’ NS
:é? O 6t=20fs Ci’/
= St
2 -
é 725 7 -
g - % -
= :it’ -7 7
7.00 .- -
§ | | |
280 290 300 310

T (Kelvin)

J. Chem. Theory Comput. 2024, 20, 368-374
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Hydrogen Mass Repartitioning (HMR)

The ideais to increase the mass of the hydrogen atoms while decreasing the mass of the
oxygen atoms to increase the integration step size from 2 fs to 4 fs.

1.008 3.024
12.010 5.962
1.008 3.024 TABLE IV
Summary of Maximum Time Steps (Af,,).
—> Al (fS)
Topology type AR
12.010 12.010
Normal 1 u 3 3
§6.000 16.000 Normal 4 u 6 4
Dummy 1 u 8 7
Dummy 4 u 8 7
14.0101.008 12.010 11.990 3.024 9.994
(a) (b)
TABLE II.
Atomic Masses in Water.?
Mass (u) ! n D TH bond Drift gy Al
H [o] (unm?) (10 *kgm 's 1) 10 °m?s ) (ps) (kdmol "ps ) (fs)
1 16 0.0059 43 4.08 0.67 1.04 6.6
2 14 0.0104 47 3.89 0.74 0.86 89
3 12 0.0133 4.9 3.79 0.89 0.42 10.0
4 10 0.0148 4.9 3.34 0.79 0.36 10.3
5 8 0.0148 5.1 3.50 0.84 0.47 10.4
6 6 0.0133 5.3 3.35 0.84 0.59 86
7 4 0.0104 5.2 3.34 0.88 0.43 75
8 2 0.0059 5.1 3.60 0.95 0.61 5.6
Real H,O — 8.0 23 0.59 — —
Real D,0 — — 2.0 — _ _

#J: corresponding smallest moments of inertia; resulting dynamical properties: #: viscosity; D: diffusion constant. Values of H,O
and D, 0 from Lide et al.*® and hydrogen-bond lifetime (7 p,n4) value of H,O from Montrose®'; RMS drift of the total energy over
12 runs at a time step of 4 fs; maximum time step (At,,.,) at a maximum order of 10 of the drift as a function of time step.

J. Comp. Chem., 1999, 20, 8, 786-798.
J. Chem. Theory Comput. 2015, 11, 1864-1874.



Multi-Timestep Integrator (MTS)

1. 1.
'["'T(rl: ]f‘*-‘\.,-'j = Z Sflbond('r — TD)Q + Z Eﬁhbcnd{g - '90:]2

bonds bends

]
+ Z Z An [1 4 cos(Crd + 6]

tors n=0

o3 () - (22)

i,jEnb

n i .
T‘fj'

Intramolecular potentials (fast force) have large and rapidly varying components while
nonbonded potentials (slow force) have slowly varying components due to long-range nature.

But we should choose integrator time step dt for the fast force.

Why don’t we use a integrator capable of separating the time scales fora gain in computational
efficiency, such as allowing the slow forces to be recomputed less frequently than the fast forces?

. P
r — —
T

P — Ffa&.t(-r) T Fg,]gw{ﬂ?).

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023 27



Multi-Timestep Integrator (MTS)

. p
xr = —
m

p = Frast(x) + Fg.lgw(;lﬁ).

Liouville operator for this systemis given by

.0
il, = ——+ [Ffaﬁt () + Filow (i’)_ 5

This separation (kinetic/force) leads to the standard velocity Verlet algorithm:

1L =1l +1L9
iL, =29
m Ox
| 0
'ILQ = [Ffast (-’17) T FE.IDW(I)_ -
dp

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023
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Multi-Timestep Integrator (MTS)

- P
r=—

T

jj — Ffast{ir} T Fg.lgw(;lﬁ).
Liouville operator for this systemis given by

. _pO 0
il = m O + [Ffast (T) + Fiiow (-1) E_jp

This separation (fast/slow) leads to the reference system propagator (RESPA) algorithm:

1L = iLgast + 1 Laow

R
Lot = A + Frast(2) op
: d
iLsiow = Fslow (17)%
: , At | | At
exp(iLAt) = exp ('IleuwT> exp(? Lo At) exp (ELSM“..T> .

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023
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Multi-Timestep Integrator (MTS)

At
EK[}(?{L'QIL-) = exp (IL*;.I::M 9

| |

At
) exp(é-ﬂ'faat&t) exp (ileuw T) .

In here, At is the time step of the slow force.

Introducing the time step of the fast force &t = At/n,

d d ot d\|"
exp(i-ﬂfast&t) = |eXp 5tha::-t exp (ﬁE_ exXp _Ffastr_ .
Op m Jx D

exp(tLAt) = exp (i\f slow

9
Op
X |:er ( -F, fast di
P
0

ﬁ;f
X exp *:-lcrw

ex t—— ex ﬁF E '
P m Ox P 2 faﬂﬁ-p

dp

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023 30



Multi-Timestep Integrator (MTS)

At At
EKP(?L&H — €Xp (ileow T) EKD('I'Lfastﬂi) exp (EIL'SJGWT> .

| |

In here, At is the time step of the slow force.

Introducing the time step of the fast force &t = At/n,

p=p-+ 0.5 At * F ..

fori=1ton
p=p+ 0.5 %0t % Fr,q
r=x+dtxp/m
Recalculate fast force

p:p—l—o.:}*éfﬁﬁFfabt
endtor

Recalculate slow force

p=p-+0.5% At * Flow.

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023

31



Resonance Instability

There is a limit on the size of the time step forthe slow forces by that of the fast forces
So called the resonant time step is set by the fast frequency w.

The higher the value of w, the smaller time step should be chosen, which limits the
computational savings afforded by the algorithm independent of how slow the slow force is.

100 T T T T T T T T 100 T T T ' T T T
(a)
wl w0l . M (o=1/4)
f Verlet (a=0)
3 B
) @ : 1/
k5 5 P LIM2 (a=1/2)
z 1k E 1 {1
S F e E { i
s r g : P EW (0=1/3) ~——am.
unprocessed ___,.ooeeet 5 ; )
01 e o1k i
- " %
cheaply poslprocesselcﬂl_m_"w,_... postprocessed
0.01 R 1 ' L s ' ' A 001 o L 1 L i L 1
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2 4 6 8 10 12 14
time step [fs] time step [fs]

J. Comput. Phys., 1998, 140, 1-29 32



What properties should integration algorithms satisfy?

3. Accuracy

B Configurational sampling

B Dynamical properties

33



Operator splitting order is related to the configurational sampling

X Y 0 0
H B H N —M_ITU():)] N [—w + 27 (BM) V2w
SN ~ 7N ~ 4
R Vv 0
LT Ax _ |V
R : e Av D] T
Ax | | 0
1':\.,-'1' —
Ve Av ~-M'VU(x)
0 - EEOT . Ax _ 0
| - |Av (a(t) =1)v + /1 —a(7)*(BM) /28

Once a splitting is defined, the propagator exp(Ldt) can be approximated as a Trotter factorization.
E[A+B+C+D]ﬁt

— oAAH/2,[B+C+D]AL AAL/2 + O(&f‘a)

_ HAm,r’EEEﬂtfze[C+D]&rﬁB&r,’zgﬁﬁr;z + O(&t:{)

. i
— EA&UEEEﬁtfzcCﬁt!EEDmcCﬁUEEBﬁﬁleA-ﬁfa 2 + O(ﬂfl}

Entropy, 2018, 20, 318 34



Operator splitting order is related to the configurational sampling
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Operator splitting order is related to the configurational sampling
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Operator splitting order is related to the dynamic properties

Table 1. Definition of Dynamical Properties”

continuous-limit value

external force quantity expression
zero mean-squared displacement {r(n)) or (P(n+ 1/2))
mean-squared velocity {*(n)) or (W (n + 1/2))
velocity autocorrelation (v(n)v(n + An)) or (v(n + 1/2) v(n + 1/2 + An))
uniform, f terminal drift (r(n + 1) — r(n)) / At = {r(n + 1/2) — r(n — 1/2)) / At
linear, —kr mean-squared displacement {*(n)) or (PA(n +1/2))
mean-squared velocity {*(n)) or (P (n + 1/2))
virial m{v?(n)) — k{(r*(n)) or m{v*(n + 1/2)) — k{r*(n + 1/2))
Table 2. Comparison of Properties for Different Splittings®
desideratum OVRVO ORVRO RVOVR VRORV VOROQV
All Six Splittings Perform Identically
form is time-reversal symmetric yes yes yes yes yes
splits heat, work, and shadow work yes yes yes yes yes
casily incorporates constraints yes yes yes yes yes
force evaluations per time step one one one one one
zero-force MSV exact exact exact exact exact
zero-force VAC exact exact exact exact exact
zero-force MSD exact exact exact exact exact
linear-force virial o(Af) O(Af) o(AP) O(AP) O(A)
Splittings Differ in Performance
uniform-force terminal drift exact exact exact exact O(AP)
linear-force MSD O(Af*) at n O(A£) at n exact at n exact at n O(A#)
exact at n + 1/2 exact at n + 1/2
exact at n exact at n O(AP) at n O(A#) at n O(At") at n
exact at n + 1/2 exact at n + 1/2

linear-force MSV

J. Phys. Chem. B, 2014, 118, 6466-6474
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Takeaways

B Liouville operator splitting is important to ensure the stability of the integration algorithm,
and to provide the direct translation of algorithms.

B Efficiencyof the integration algorithm can be gained by increasing the maximum
permissible time step.

B Several strategies are the constraint algorithm, hydrogen mass repartitioning, and multi-
step integration algorithms.

B Changing the splitting orders of the integration procedure can impact on the
configurational sampling and the dynamic properties of the system.
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Q&A
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