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Yes we solve F=ma in classical MD simulation
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But there are much more things that we should understand here!



The list of integrator implemented in OpenMM
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In OpenMMtools 
(https://openmmtools.readthedocs.io/en/stable/
integrators.html),

In OpenMM,



Basics of MD simulation
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In classical mechanics, the equation of motion is integrated to generate the trajectory.

Energy is conserved in classical mechanics!

By solving F=ma, we sample the microcanonical ensemble (constant E) for ensemble averages.

We need to sample the x_t in microcanonical ensemble, which we call it trajectory.(.dcd)

In here, we introduce the time discretization parameter dt, known as the time step.

Starting with the initial cond x_0, x_dt, x_2dt, x_3dt are generated by applying the integrator iteratively.



Simple integration schemes

6

A discretization of the equations of motion can be obtained by Taylor expansion:

By the Euler algorithm, the trajectory is calculated according to:

WE DO NOT USE THIS, since this is not stable (neither time-reversible nor symplectic)

Ulf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008



Simple integration schemes
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A discretization of the equations of motion can be obtained by Taylor expansion:

By the Verlet algorithm (1967), the trajectory is calculated according to:

The updating equation for the positions and velocities are:

Ulf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008

Phys. Rev. 1967, 159, 98.



Simple integration schemes
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A discretization of the equations of motion can be obtained by Taylor expansion:

By the Leap-frog algorithm, the trajectory is calculated according to:

The velocities are updated at half time steps and ‘leap’ ahead the positions as:

Ulf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008



Simple integration schemes
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A discretization of the equations of motion can be obtained by Taylor expansion:

By the Velocity-Verlet algorithm (1982), the trajectory is calculated according to:

This is very stable and has become the perhaps most widely used integration algorithm.

The Velocity-Verlet scheme is a symplectic integrator.

Ulf D. Schiller, An overview of integration schemes for molecular dynamics simulations, 2008

J. Chem. Phys. 1982, 76, 637-649.



What properties should integration algorithms satisfy?
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1. Stability 

■ Energy conservation

■ Symplecticity

■ Time reversibility

2. Efficiency

■ Maximum permissible time step

■ Constraint algorithm

■ Hydrogen mass repartitioning

■ Multi-step integration

3. Accuracy 

■ Configurational sampling

■ Dynamical properties



What properties should integration algorithms satisfy?
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1. Stability 

■ Energy conservation

■ Symplecticity

■ Time reversibility



Classical time evolution operator and numerical integrators
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It would be nice if we can derive the Verlet integration algorithm directly from the classical 
mechanics such as Hamilton’s equation. Then ‘symplecticity’ (the phase-space volume 
preserving property) is guaranteed.

For the time evolution of any function a(x) of the phase space vector,

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators
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Let’s define the Liouville operator L as:

We call the operator exp(iLt) as the classical propagator.

From now on, let’s split the Liouville operator into two:

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators

14

Let’s define the Liouville operator L as:

We call the operator exp(iLt) as the classical propagator.

From now on, let’s split the Liouville operator into two:

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators
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By the Trotter theorem,

For the Hamiltonian 

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators
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Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Classical time evolution operator and numerical integrators
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Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023

This is just the update step in the Velocity Verlet algorithm!

Symplecticity is now guaranteed!



Classical time evolution operator and numerical integrators
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For the N-particle systems:

Again, we can split the Liouville operator into two:

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Symplecticity
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Q. Why symplecticity is good to be guaranteed?

A. Sympletic integrator has the important property that there exists a shadow Hamiltonian that 
remains close to the true Hamiltonian and is exactly conserved by the algorithm.

Example: 1D Harmonic Oscillator

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



What properties should integration algorithms satisfy?
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2. Efficiency

■ Maximum permissible time step

■ Constraint algorithm

■ Hydrogen mass repartitioning

■ Multi-step integration



The maximum permissible time step
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The maximum time step in simulation is limited by the fastest motions which invariably involve 

hydrogen atoms, which is usually set to be 1 fs for usual simulation.

Some simulation techniques are further required to increase the maximum time step, but how?

J. Comp. Chem., 1999, 20, 8, 786-798.



The idea of constraint
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Rigid distance (or angle, proper angle, improper angle) constraints are used to increase the 

integration step size from 1 fs to 2 fs.

The idea is to use the method of Lagrange multipliers.

We apply a constraint force to atoms m and n, which produces a combined displacements δ 
along the constraint algorithm such that σ = 0 at the end of the time step.

This requires iteratively solving a system of nonlinear equations (i.e. Newton iteration)

There are many constraint algorithms in MD simulation package which differentiates with the 
way to construct the jacobian matrix J and the way to perform the iteration.

List of algorithms: SHAKE, M-SHAKE, SHAPE, RATTLE, SETTLE, LINCS, P-LINCS, CCMA....

J. Chem. Theory Comput. 2010, 6, 434-437



Constraint algorithm implemented in MD simulation package
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In OpenMM,

SETTLE for water molecules only. 

SHAKE for isolated clusters of one heavy atom with up to three hydrogens bonded to it. 

CCMA for anything not handled by one of the above algorithms.

(LINCS is not implemented in OpenMM)

Remark.

M-SHAKE constructs the jacobian matrix and then invert it, which is quite stable but high-cost.

LINCS circumvents the invertion of jacobian matrix by representing J^(-1) as a power series, but for strongly 
connected system, this series converges very slowly or even fail to converge.

SHAKE approximates J^(-1) using its upper triangle form for improved convergence at very little extra cost. 
This method is very popular but hard to be implemented efficiently on parallel architectures.

SETTLE uses an analytical solution for rigid water molecules rather than solving it iteratively. But only 
applicable to water molecules.

CCMA  approximates J^(-1) with a different matrix K^(-1) that is easier to calculate on parallel architectures.

J. Chem. Theory Comput. 2010, 6, 434-437



Convergence issues on constraint algorithm

24

Cholesterol in MARTINI force field is a notorious molecule due to highly coupled constraints.

Applying LINCS algorithm with small LINCS Order and Iterations fails to be converged, 
which causes a negative energy drift and subsequently to cooling.

Such issue can be circumvented by additional incorporating the virtual sites in cholesterol.

J. Phys. Chem. B 2021, 125, 9537-9546.

J. Chem. Theory Comput. 2023, 19, 1592-1601.



Shot time step is sometimes inevitable 

25J. Chem. Theory Comput. 2024, 20, 368-374

dt=2fs is often used in simulating rigid models of water with constraint (SHAKE, SETTLE)

“Fast internal vibrations are usually decoupled from rotational and translational motions?”



Hydrogen Mass Repartitioning (HMR)
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The idea is to increase the mass of the hydrogen atoms while decreasing the mass of the 

oxygen atoms to increase the integration step size from 2 fs to 4 fs.

J. Comp. Chem., 1999, 20, 8, 786-798.

J. Chem. Theory Comput. 2015, 11, 1864-1874.



Multi-Timestep Integrator (MTS)
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Intramolecular potentials (fast force) have large and rapidly varying components while 
nonbonded potentials (slow force) have slowly varying components due to long-range nature.

But we should choose integrator time step dt for the fast force.

Why don’t we use a integrator capable of separating the time scales for a gain in computational 
efficiency, such as allowing the slow forces to be recomputed less frequently than the fast forces?

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Multi-Timestep Integrator (MTS)
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Liouville operator for this system is given by

This separation (kinetic/force) leads to the standard velocity Verlet algorithm:

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Multi-Timestep Integrator (MTS)
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Liouville operator for this system is given by

This separation (fast/slow) leads to the reference system propagator (RESPA) algorithm:

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Multi-Timestep Integrator (MTS)
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In here, Δt is the time step of the slow force.

Introducing the time step of the fast force δt = Δt/n,

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Multi-Timestep Integrator (MTS)
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In here, Δt is the time step of the slow force.

Introducing the time step of the fast force δt = Δt/n,

Mark T. Tuckerman, Statistical mechanics: Theory and Molecular Simulation 2thed, 2023



Resonance Instability
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There is a limit on the size of the time step for the slow forces by that of the fast forces

So called the resonant time step is set by the fast frequency w.

The higher the value of w, the smaller time step should be chosen, which limits the 
computational savings afforded by the algorithm independent of how slow the slow force is.

J. Comput. Phys., 1998, 140, 1-29



What properties should integration algorithms satisfy?
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3. Accuracy 

■ Configurational sampling

■ Dynamical properties



Operator splitting order is related to the configurational sampling
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Once a splitting is defined, the propagator exp(Ldt) can be approximated as a Trotter factorization.

Entropy, 2018, 20, 318



Operator splitting order is related to the configurational sampling

35J. Phys. Chem. B, 2014, 118, 6466-6474

ORVRO

RVOVR (ABOBA)

VRORV (BAOAB)

ROVOR

VOROV



Operator splitting order is related to the configurational sampling

36Entropy, 2018, 20, 318



Operator splitting order is related to the dynamic properties

37J. Phys. Chem. B, 2014, 118, 6466-6474



Takeaways

38

■ Liouville operator splitting is important to ensure the stability of the integration algorithm, 
and to provide the direct translation of algorithms.

■ Efficiency of the integration algorithm can be gained by increasing the maximum 
permissible time step. 

■ Several strategies are the constraint algorithm, hydrogen mass repartitioning, and multi-
step integration algorithms.

■ Changing the splitting orders of the integration procedure can impact on the 
configurational sampling and the dynamic properties of the system.



Q&A

39
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