Force and Energy Computation

Week 1 : How MD works?

2024 Winter Molecular Simulation Seminar January 12th, 2024

> Presenter: Seonghyeon Kang Advisor: Prof. Chang Yun Son

Week 1 : How MD Works?

Basic Principle of Molecular Dynamics

- *1. Information of Potential Energy from Force Field*
- *2. Calculation of Potential Energy*
- *3. Computing Force, Displacement, Velocity, … from Integration Algorithm*

Two Kinds of Potential Energy(Brief Classification)

- *1. Bonded Energy(Bond, Angle, Torsion, Improper)*
	- *Easy and clear to compute(Low time complexity)*
- *Short-range Interaction*

2. Nonbonded Energy(Lennard-Jones, Electrostatic energy)

- *Difficult to compute(High time complexity)*
- *Long-range interaction(Periodicity, Finite Size Effect)*

Contents

- *1. Periodic Boundary Condition & Finite Size Effect*
- *2. Computational Algorithms for Nonbonded Energy Calculation*
	- *3. Why we use PME(Particle-Mesh-Ewald)? & Artifacts of PME*
		- *4. GPU parallelization of Nonbonded Energy Computation*

1. Periodic Boundary Condition(PBC) & Finite Size Effect

Allen, M. P., & Tildesley, D. J., Computer simulation of liquids. *Oxford university press.* **2017**

Simulation Box Periodic Image/Finite Size Convention *If we don't apply periodic images.. - Surface effect become dominant - PBC is applied to minimize it!*

But PBC can make another artifacts - It is called Finite Size Effect - Due to the artificial external environments

1. Periodic Boundary Condition(PBC) & Finite Size Effect

Examples of Finite Size Effect

- Diffusion Coefficient(And its correction)

Celebi, A. T., Jamali, S. H., Bardow, A., Vlugt, T. J., & Moultos, O. A., Finite-size effects of diffusion coefficients computed from molecular dynamics: a review of what we have learned so far. *Mol. Sim.*, **2021**, *47*(10-11), 831-845.

1. Periodic Boundary Condition(PBC) & Finite Size Effect

Examples of Finite Size Effect

- *- Thermal Conductivity*
- *- Solvation Energy*

- …

The main reasons of these artifacts 1) Periodic images significantly affect the simulation box 2) Non-periodic nature of the real phenomenon

We have to set the proper size of simulation box to secure the accuracy and efficiency of computation!

Bonded Energy

- *- Easy and clear to compute*
- *- Short-range Interaction*
- *- Low time complexity*

Nonbonded Energy

- *- Difficult to compute*
- *- Long-range Interaction*
- *- High time complexity*

Van-der Walls energy(Rapidly decay, ~ r-6) - Cutoff energy

Electrostatic energy(Slowly decay, ~ r-1) - Cutoff unavailable - PME, PPPM, Reaction Field, FMM, …

Van-der Walls energy

8 simulation of liquids. *Oxford university press.* **2017***Allen, M. P., & Tildesley, D. J.*, Computer

Electrostatic Interaction

Direct Coulomb Summation

 $E_{elec}=\frac{1}{2}$ $\frac{1}{2}$. $\overline{\mathbf{i}=\mathbf{1}}$ \boldsymbol{N} \sum $\overline{\mathbf{j}^{\pm}}\mathbf{i}$ $\sum_{i=1}^{N} q_i q_i$ r_{ij}

Exact summation of all coulombic interaction The most accurate, but also the most expensive one(O(N2)) Moreover, it has low scalability to parallelize this algorithm

Alternative approach to make efficient algorithms

Particle Mesh Ewald(PME) Method

Particle – Particle/Particle-Mesh(PPPM) Method

Reaction Field Method

Fast Multipole Method

(OpenMM utilizes sPME & Reaction Field Method)

Electrostatic Interaction

Particle Mesh Ewald(PME) Method(Idea)

Sum of Coulombic energy = real space sum + reciprocal space sum

Stenberg, S., & Stenqvist, B., An exact Ewald summation method in theory and practice. *The Journal of Physical Chemistry A,* **2020***,124(*19*),* 3943-3946.

Narrow distribution in real space : Broad distribution of reciprocal space Broad distribution in real space : Narrow distribution of reciprocal space

Electrostatic Interaction

Particle Mesh Ewald(PME) Method(Formalism & Performance)

 $\begin{split} E_{\text{dir}} & = \frac{1}{2} \sum_{n}^{*} \sum_{i,j=1}^{N} \frac{q_{j}q_{j}}{|\mathbf{r}_{j}-\mathbf{r}_{i}+\mathbf{n}|}, \\ E_{\text{rec}} & = \frac{1}{2 \pi V} \sum_{\mathbf{m} \neq 0} \frac{\exp(-\pi^{2} \mathbf{m}^{2} / \beta^{2})}{\mathbf{m}^{2}} S(\mathbf{m}) S(-\mathbf{m}), \\ E_{\text{corr}} & = -\frac{1}{2} \sum_{(i,j) \in M} \frac{q_{i}q_{j}}{|\mathbf{r}_{i}-\mathbf{r}_{j}|} \frac{\$ *Direct space summation Reciprocal space summation Error correction(Self-interaction)summation* $S(m) = \sum_{i=1}^{n} q_i \exp(2\pi i m \cdot r_j) = \sum_{i=1}^{n} q_i \exp[2\pi i (m_1 s_{1j} + m_2 s_{2j} + m_3 s_{3j})]$ (Structure Factor)

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G., A smooth particle mesh Ewald method. *The Journal of chemical physics*, **1995**, *103*(19), 8577-8593.

Time Complexity : O(NlogN) Accuracy : Medium accuracy, Depending on (Ewald splitting parameter) Scalability : High(3D Discrete Fast Fourier Transform)

George, A., Mondal, S., Purnaprajna, M., & Athri, P., Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors*. ACS omega, 2022, 7(*37*),* 32877-32896.

Electrostatic Interaction

Particle Mesh Ewald(PME) Method(PME vs sPME)

$$
S(\mathbf{m}) = \sum_{j=1}^{N} q_j \exp(2\pi i \mathbf{m} \cdot \mathbf{r}_j) = \sum_{j=1}^{N} q_j \exp[2\pi i (m_1 s_{1j} + m_2 s_{2j} + m_3 s_{3j})]
$$
 (Structure Factor)
exp $(2\pi i \mathbf{m} \cdot \mathbf{r})$ = exp $\left(2\pi i \frac{m_1 u_1}{K_1}\right)$ exp $\left(2\pi i \frac{m_2 u_2}{K_2}\right)$ exp $\left(2\pi i \frac{m_3 u_3}{K_3}\right)$

Approximation of Structure Factor I : Lagrangian Interpolation(PME)

$$
\exp\left(2\pi i \frac{m_{\alpha}}{K_{\alpha}} u_{\alpha}\right) \approx \sum_{k=-\infty}^{\infty} W_2(u_{\alpha} - k) \cdot \exp\left(2\pi i \frac{m_{\alpha}}{K_{\alpha}} k\right) \qquad W_{2p}(u) = \frac{\prod_{j=-p, j\neq k}^{p-1} (u+j-k)}{\prod_{j=-p, j\neq k}^{p-1} (j-k)}
$$

for $k \le u \le k+1, k=-p, -p+1, ..., p-1$

Approximation of Structure Factor II : Cardinal B-Spline(sPME)

$$
\exp\left(2\pi i \frac{m_i}{K_i} u_i\right) \approx b_i(m_i) \sum_{k=-\infty}^{\infty} M_n(u_i - k) \cdot \exp\left(2\pi i \frac{m_i}{K_i} k\right) \qquad \text{Implemented in OpenMM}
$$
\n
$$
M_n(u) = \frac{u}{n-1} M_{n-1}(u) + \frac{n-u}{n-1} M_{n-1}(u-1) \qquad b_i(m_i) = \exp\left(2\pi i (n-1) m_i / K_i\right) \times \left[\sum_{k=0}^{n-2} M_n(k+1) \exp\left(2\pi i m_i k / K_i\right)\right]^{-1}
$$

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G., A smooth particle mesh Ewald method. *The Journal of chemical physics*, **1995**, *103*(19), 8577-8593.

Electrostatic Interaction

Particle – Particle/Particle – Mesh(PPPM) Method

Based on Ewald sum(dividing short range/long range interaction + FFT) Short range : particle-particle & Long range : particle-mesh

$$
\psi_s(\zeta_{ij}) = \frac{1}{4\pi\epsilon_0} \left(\frac{1}{r_{ij}} - \frac{1}{70a} \sum_{n=-1}^7 C_n \zeta_{ij}^n \right) \zeta_{ij} < 2 \quad \text{Short range interaction}
$$
\n
$$
\hat{\psi}(k) = \hat{\gamma} \frac{(k)^2}{\epsilon_0 k^2} \hat{\rho}(k) = \hat{G}(k)\hat{\rho}(k) \quad \text{Long range interaction}
$$
\n
$$
(48 (a)) \qquad a
$$

$$
\zeta_{ij} = \frac{2r_{ij}}{a} \ \gamma(r) = \begin{cases} \frac{40}{\pi a^4} \left(\frac{a}{2} - r \right) & r < \frac{a}{2} \\ 0 & r > \frac{a}{2} \end{cases}
$$

Time Complexity : O(NlogN) Accuracy : High accuracy, More than PME Scalability : Medium(Increase of long-range part make lower scalability)

George, A., Mondal, S., Purnaprajna, M., & Athri, P., Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors*. ACS omega, ²⁰²², 7(*37*),* 32877-32896. 13

Electrostatic Interaction

Reaction Field Method(Idea)

Spherical Truncation(r < r_c) + Dielectric Continuum Outside

Explicit interaction weighting

$$
f(r_{ij}) = \begin{cases} 1.0 & r_{ij} < r_{\rm t} \\ (r_{\rm c} - r_{ij})/(r_{\rm c} - r_{\rm t}) & r_{\rm t} \le r_{ij} \le r_{\rm c} \\ 0.0 & r_{\rm c} < r_{ij} \\ (r_{\rm t} \sim 0.95r_{\rm c}) \end{cases}
$$

Reaction field acting on molecule i

$$
\mathcal{E}_i = \frac{2(\epsilon_{\rm s}-1)}{2\epsilon_{\rm s}+1} \frac{1}{r_{\rm c}^3} \sum_{j \in \mathcal{R}} \mu_j
$$

Allen, M. P., & Tildesley, D. J., Computer simulation of liquids. *Oxford university press.* **2017**

Electrostatic Interaction

Reaction Field Method(Formalism)

$$
\mathcal{V}^{qq} = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j, l \neq j \\ R_{IJ} < r_c}}^{N} q_i q_j \left[\frac{1}{r_{ij}} + \left(\frac{\epsilon_s - 1}{2\epsilon_s + 1} \frac{r_{ij}^2}{r_c^3} + C \right) \right] + \mathcal{V}_{\text{Born}} + \mathcal{V}_{\text{self}}
$$
\n
$$
\mathcal{V}_{\text{Born}} = -\frac{1}{2} \left(\frac{\epsilon_s - 1}{\epsilon_s} \right) \frac{1}{r_c} \sum_{i=1}^{N} q_i \sum_{\substack{l,j \text{ s.t.} \\ R_{IJ} < r_c}}^{N} q_j \quad \mathcal{V}_{\text{self}} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j \in I}^{N} q_i q_j \left(\frac{\epsilon_s - 1}{2\epsilon_s + 1} \frac{r_{ij}^2}{r_c^3} + C \right) \quad C = -\frac{1}{r_c} \left[1 + \frac{\epsilon_s - 1}{2\epsilon_s + 1} - \frac{\epsilon_s - 1}{\epsilon_s} \right]
$$
\nLinearized Poisson-
Boltzmann Equation

\n
$$
B_1 = \frac{(1 - 4\epsilon_s)(1 + \kappa r_c) - 2\epsilon_s(\kappa r_c)^2}{(1 + 2\epsilon_s)(1 + \kappa r_c) + \epsilon_s(\kappa r_c)^2}
$$

Time Complexity : O(N) Accuracy : Low accuracy Scalability : High Reaction Field Method is

Implemented in OpenMM

15 *Allen, M. P., & Tildesley, D. J.*, Computer simulation of liquids. *Oxford university press.* **2017**

Electrostatic Interaction

treecode & FMM

Yokota, R., & Barba, L. A., GPU Computing Gems Emerald Edition, chapter 9: 16
Treecode and fast multipole method for N-body simulation with CUDA, 2011. 16

Electrostatic Interaction

Fast Multipole Method(Formalism & Performance)

Potential

$$
\phi(\mathbf{r}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{m=\ell} M_{\ell,m} G_{\ell,m}(\mathbf{r}) \qquad G_{\ell,m}(\mathbf{r}) = \frac{(-1)^{\ell-m}(\ell-m)!}{r^{\ell+1}} \exp(im\varphi) P_{\ell,m}(\cos\theta)
$$

Solution

$$
M_{\ell,m} = \sum_{i=1}^{N} q_i F_{\ell,m}^*(-\mathbf{r}_i), \quad F_{\ell,m}(\mathbf{r}) = \frac{(-1)^{\ell-m} r^{\ell}}{(\ell+m)!} \exp(\mathrm{i} m \varphi) P_{\ell,m}(\cos \theta).
$$

Time Complexity : O(N), top 10 algorithms in 20th century Accuracy : Medium accuracy Scalability : High, One of the most scalable algorithm

FMM is Implemented in GROMACS

3. Why we use PME(Particle-Mesh-Ewald)? & Artifacts of PME

Why we use PME nowadays?

- *1. Low complexity(O(NlogN)) 2. Quite high accuracy 3. High scalability*
- *4. Traditionally utilized 5. Easy to parametrize*

Limits & Artifacts of PME

1. Only appliable in charge neutral system

2. In non-neutral system, uniform background charge distribution to compensate the charge of the system is applied.

3. The background charge induces artifacts related to dielectric constant in inhomogeneous system

Ex) Over-stabilization of ions in low-dielectric medium

3. Why we use PME(Particle-Mesh-Ewald)? & Artifacts of PME

Limits & Artifacts of PME

1. Only appliable in charge neutral system

2. In non-neutral system, uniform background charge distribution to compensate the charge of the system is applied.

$$
E_{elec} = E_{real} + E_{recip} + E_{back} - E_{self}
$$

$$
E_{real} = \frac{1}{2} \sum \sum_{i \neq j} q_i \phi_{real}
$$

\n
$$
E_{back} = \frac{1}{2} \int_{V} \rho_{back} \phi_{real} \, dr = \frac{\pi q_{tot}^2}{2V \alpha}
$$

\n
$$
= \frac{1}{2} \sum_{k} (\tilde{\rho}_{back} + \tilde{\rho}_{smooth}) \tilde{\phi}_{recip} \exp(ikr_i)
$$

\n
$$
= \frac{1}{2} \sum_{k} (\tilde{\rho}_{back} + \tilde{\rho}_{smooth}) \tilde{\phi}_{recip} \exp(ikr_i)
$$

\n
$$
= \frac{1}{2} \sum_{k} \tilde{\rho}_{smooth} \tilde{\phi}_{recip} \exp(ikr_i)
$$

\nInfinite sum
\nLow convergence

but the energy will be depend on non-physical parameter

 ρ_{back} is constant, $\tilde{\rho}_{back} \phi_{reciv} = 0$ for $k \neq 0$ *Also,* $\tilde{\rho}_{recip}\tilde{\phi}_{recip}(k=0) = \int \rho_{recip} dV = 0$

3. Why we use PME(Particle-Mesh-Ewald)? & Artifacts of PME

Limits & Artifacts of PME

3. The background charge induces artifacts related to dielectric constant in inhomogeneous system

Utilizing PME method with non-neutral system : Technically possible

However, constant dielectric environment gives significant artifacts for heterogeneous dielectric environment

Ex) proteins solvated in water, membrane solvated in water

Real system : nonuniform counter charge distribution, generates electrostatic gradients PME w/ non-neutral system : No electrostatic gradient

4. GPU parallelization of Nonbonded Energy Computation

CPU vs GPU

- *- Central Processing Unit*
- *- Serial cores*
- *- Low latency*
- *- Good for serial processing*
- *- Can do handful of operation at once*

- *- Graphic Processing Unit*
- *- Many cores*
- *- High throughput*
- *- Good for parallel processing*
- *- Can do thousands of operation at once*

21 *Paz, A., & Plaza, A.,* A new morphological anomaly detection algorithm for hyperspectral images and its GPU implementation. In Satellite Data Compression, Communications, and Processing VII(Vol. 8157)., *SPIE*, **2011**

4. GPU parallelization of Nonbonded Energy Computation GPU Acceleration

It is based on the principle of parallel computing

Scalability is the important factor to make the parallel computing better

Table 1. Summary of Comparisons between Different Electrostatic Force Calculation Algorithms (EFC Alg.)^a

EFC Alg.	complexity	accuracy	scalability	boundary conditions
DCS	$O(NO)$ 60	Highest ⁴⁷	Low ⁴⁷	NPC, PC
MSM	$O(N + Q)^{33}$	Medium ³³	High ³³	PC, SPC, NPC
P^3 M	$O(N \log N)$ 67	High ³²	Medium ^{69,70}	PC
PME	$O(N \log N)^{32}$	Median ^{60,61}	High ^{$62,63$}	PC
FMM	$O(N)$ 79,80	Medium ^{77,78,82}	High ⁸¹	NP, PC

"NPC stands for nonperiodic conditions, PC for periodic conditions, and SPC for semiperiodic conditions.

George, A., Mondal, S., Purnaprajna, M., & Athri, P., Review of Electrostatic Force Calculation Methods and Their Acceleration in Molecular Dynamics Packages Using Graphics Processors*. ACS omega, 2022, 7(*37*),* 32877-32896.

Takeaways

■ For computing energy in molecular simulation box, PBC *is applied to prevent excess surface effect in the system. Sometimes artificial environment from PBC induce artifacts of simulation*

■ Several algorithms to compute high-cost nonbonded energy were developed(Cutoff, PME, PPPM, FMM, Reaction Field).

■ Nowadays, PME is the most used algorithm for nonbonded energy calculation due to its performance. However, PME has several limitations and artifacts.

■ GPU can accelerate nonbonded computation. To utilize GPU for it, scalability of computing algorithms matters.

Thank you for your kind attention / Q&A

