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Appetizer : We always think the timescale of dynamics

B Biological process has the long range of timescales.

Side-chain rotamer [1] B|Om0|eCU|eS 2018, 8, 83
Protein MD Bond vibration Loop motions Large domain motions
Salt Interaction Base switch
Nucleic Acid MD Small molecules and Nucleic acids
ssDNA/RNA folding
Experimental NMR

X-ray diffraction

B Many sampling methods can explore the phase space efficiently. But, to investigate the “kinetics”,

we need “Time axis!”

M Markov State Modelings(MSMs) can bridge this timescale gap by modeling the long timescale dynamics
based on many short MD simulations.

Then, Let’s ask. 1) What’s the meaning of ‘Markov’?
2) How do we set MSMs?
3) What are the applications & challenges for MSMs?
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Content

Introduction) Markov chain : Memoryless

Building MSM : How do we partition the space and time?

Analysis MSM : What quantities can be calculated?

Further MSM : Wake up! It’s time for math.




Content

Introduction) Markov chain : Memoryless

Building MSM : How do we partition the space and time?

Analysis MSM : What quantities can be calculated?

Further MSM : Wake up! It’s time for math.




Introduction to Markov chains : Memoryless

B The most important keyword you should remember in Markov chains is “Memoryless”

B Def] Markov Process : A stochastic process where the future state only depends on the

present state and all the past states are eliminated. p (-)
33
. : . Po3 S P23
Let’s consider the (discrete) Markov chains. /-‘ > '
1—/ Pé\v P22
x, (k =0,1,2,..) : arandom variable, Pg; Sy 130 P, S2 O
mapping into a finite state space § = {S,, ..., S, }. ‘_\\f”’ Q
Pﬂ,l Sl P21

B Markov process satisfies the memoryless property for all kK > 1 and states S,, ..., Sy :
P(xy = Slxk—1 = Sk—1, -, X0 = So) = P(xye = Sic|xp—1 = Sk—1)

In short, we will write
P(xklxk—l' ""XO) = P(xklxk—l)

B Def] Transition matrix : T € R™" : Tij = P(xp =j | xg—1 =10) Properties of .th_e transition matrix
1. TU >0 Vl,]
[The lecture notes will be given.] 5



Introduction to Markov chains : Memoryless
B The most important keyword you should remember in Markov chains is “Memoryless

39

When we think about the probability to find the chain at state i at time Kk,
Pri = Pk-1111i + -+ Pk—1nTni = 2Pk-1,j1i
Define the probability vector p, = (py.1, ...,pk,n)T, this is compactly written as :
Pic = Pic-1T
Applying this equation k times : Chapman-Kolmogorov equation :
P = PoT"
B Def] A probability distribution 7 € R™ is a stationary distribution of T when :
n'T =n’
(Note :  exists and unique when the T matrix is irreducible and reversible. - H.W )

Note : After we set up the transition matrix, we could calculate the stationary distribution of T!
[The lecture notes will be given.]
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How do we partition the space and time?

B Let’s see the entire pipeline to set and run MSMs

MD Sampling A) Feature sefection B) Dimensionality reduction C) Clustering D) MSM estimation

uct

G) Mean first passage time

[1] J. Struct. Biol. 2021, 213, 107800



How do we partition the space and time?

Bl MSMs - step 1 : Construction

B) Dimensionality reduction C) Clustering D) MSM estimation
& 2 ; £*
r % ‘(l.«':‘. ; QTW: 2 | 3
B - & " . | & ) 6O
s o ~ % . % | \__ ,61195‘
Q : e B B
tC !
* Run MD simulation * Reduce » Partitioning the « Constructing
dimensionality to reduced- Markov state
« Calculate internal identify several dimensional Modelings
coordinates CVs conformational
(e.g. inter-residue space * Detailed balance
distances) * CVs describe the & Maximum
slowest » Centroid-based likelihood
dynamics of the algorithms estimator (MLE)
system
« E.g)K- * Described next.
« E.g)PCA means/Centers/
Medoids

[1] J. Struct. Biol. 2021, 213, 107800
[2] Springer Science & Business Media, 2013, Vol. 797.



How do we partition the space and time?

Bl MSMs - step 1 : Construction

D) MSM estimation

)

« Constructing
Markov state
Models

« Detailed balance
& Maximum
likelihood
estimator (MLE)

 Described next.

B estimation of transition matrix :

. . Ci;j(7)
T;j(@) =plx(t +7) € jlx(®) €i] =

2;Ci(7)

(C : transition count matrix (TCM)
C;;(7): corresponds to the number of transitions that begin from state | and
end at state j after the lag time 1)

Bl Detailed balance :

T
v (r) = C(7) -; C(7)

If there are large differences between C;;(7) and C;;(7) : Use MLE

obs 1_[

prlor

p(T|CP) o 1—[ T Y

Results :
l N +N ’ Y NjTL’i+NiT[j
T[ TC;

J

[1] J. Chem. Phys., 2011, 134, 174105.
[2] Springer Science & Business Media, 2013, Vol. 797.
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How do we partition the space and time?

Bl MSMs - step 1 : Construction

D) MSM estimation

Constructing
Markov state
Models

Detailed balance
& Maximum
likelihood
estimator (MLE)

Described next.

Bl Example :
For trajectory, the states : [1,1,2,2,2,1,2,1,2,1,2]

1) Transition count matrix (TCM) : N;; = 1,N;, = 4,N,y =3,Ny, =2 - (é LZL)

T
2) Detailed balance : Nsymm = X ( 1 3-5)

, 2 35 2
g 0.222 0.778
3) Generate TPM: P;; = —Z(Nfg_ymm) - (0 636 0 364) =T
ij ’ )

Bl After We set the TPM, we can do several analysis as shown below. Before that,
Let’s validation our MSM model, basically, using Chapman-Kolmogorov equation!

Review : pt = pIT*
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How do we partition the space and time?

B MSMs - step 2 : Validation

le I
»
- = |
..t ¢ Ohbserved trajectory
095 ¢ MSM, =100
— _ ‘;i o MSM, =500
5 * 1 o MSM, v=2000
£E 08 ==
5
=
= 07
<
E o6l
2 0.6
0.5
0.4 l 1
2000 4000 6000 8000 10000
(a) Time (steps)

[1] J. Chem. Phys., 2011, 134, 174105.

B The major validation of MSMs is the lag time.
B Chapman-Kolmogorov Test : Using p% = pl T*

B Check if our model shows Markovian property by checking

Pyp(nt) = [Pysy (7)]"
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How do we partition the space and time?

B MSMs - step 3 : Basic analysis

E) Conformational free energy landscape

B After we set & validate our transition matrix, we can calculate the
stationary state!

B With this stationary state, we can calculate the conformational free
energy landscape

B Thermodynamic quantity : The stationary state

-> Calculate =7 vector, which satisfies ' T = n” (eigenvalue problem)

B We have the information of lag-time and the probabilities
between each two states.

B kinetic quantity : MFPT (Mean First Passage Time)
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Analysis MSM : Let’s see the fancy applications

B Let's see some references and check “What they calculated.”

Paper 1 : A Network of Conformational Transitions in the Apo Form of NDM-1
Enzyme Revealed by MD Simulation and a Markov State Model

~W— Pathway 1
—— Pathway 2

w o ~ -]
1 1 1 1

B
1

; HHHBT
Free energy (kcal/mol)

(5]
1

L)
1

T T T T T
A P1 M2 P2 |
State

Table 1. MFPTs between Each Pair of the States in the A, M1, M2, and | States

A M1 M2 |

w A 0 3.87ns 2.36ns 60.20 ns

M1 0.16ns 0 2.25ns 60.17 ns

) e eate 2101) M2 0.17 ns 377ns 0 58.53 ns
' cmacrostate 3 (M2)

« macrostate 4 (1)

| 1.62ns 5.30 ns 2.14ns 0

[1] J. Phys. Chem. B 2017, 121, 14, 2952-2960



Analysis MSM : Let’s watch the fancy applications

B Let's see some references and check “What they calculated.”

Paper 2 : Temperature-dependent kinetic pathways of heterogeneous ice
nucleation competing between classical and non-classical nucleation
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[1] Nat Commun 12, 4954 (2021) 16
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Further MSM : We have so many things to do! (with MATH)

B Well, It's time to response some questions. | bring 3 questions.

Non-Markovian Process : What if we allow the “memory”?

-> Generalized Master Equation (GME)

Tasting the Transition Probability Matrix : What is the other eigenvalues / eigenvectors,

not its eigenvalue = 1?

Transition Path Theory : First time to meet “Committor”

[The lecture notes will be given.]
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Non-Markovian Process : What if we allow the “memory”?

-> Generalized Master Equation (GME)

B To construct TPM, we use lagged time. But, to satisfy the memoryless property,
the lagged time should be longer than the relaxation time.

Bl Some cases, running longer simulation than relaxation time is limited.
Bl Then, What if we use shorter simulation and accept the memory property?
Bl Wait, Can we ensure that the dynamics should be memoryless? Why?

Let’s review SM’s presentation on WEEK1 — Liouville equation

Classical time evolution operator and numerical integrators

Let's define the Liouville operatorL as: iLa = {a,H}

o [0K 0 OH O da/dt = iLa
L = 7 B i
1 — [C)Pn an t)qn Up(t] a(xt) —e Ltﬂ(XO),

It looks very similar with Markov chain!

[1] J. Chem. Phys. 2020, 153, 014105. 19



Non-Markovian Process : What if we allow the “memory”?

-> Generalized Master Equation (GME)

M Liouville’s equation : ap;i,r) = Lp(t,T)

p(t,T) : the probability distribution function across the entire phase space I' at time t

B The formula above means that p(t + 7,T) = e**p(t,I') > MEMORYLESS

Conclusion : In full dimension, the ensemble dynamics has memoryless property.

- Can we project the Liouville operator to C.V.-space to make generalized master equation?

- Hummer-Szabo projection operator :
P = lei(x)peq(x))n{ Yo (0|
- Nakajima-Zwanzig equation :

a t
= Pp(t) = PLPp(t) + PLe®tQp(0) + j PLeU=5)QLPp(s)ds
0

t

- General Master Equation(GME) : T(t) = T(t)T(0) — j T(t — ) K(7)dt| Tii(® = (x; @] xi(x)peq ())m;?

0 Kij () = —(x; ()] £e 2 QLx; () peq (X))

[1] J. Chem. Phys. 2020, 153, 014105. 20



Tasting the Transition Probability Matrix : What is the other eigenvalues / eigenvectors,

not its eigenvalue = 1?

B TPM, # of states = n, has n, nondegenerate Left and right eigenvectors,
whose eigenvalues are |4] <1

B Eigenvalues are related to the relaxation time of each state.

r, (m=1,..,n) :right eigenvectors of T - eigenvalues : 14, ..., 1,
r,, : orthonormal basis w.r.t. the weighted inner product

* weighted inne_rr?product

rI‘r-i-n = }lrrr.rrrte

/ | _ § B

i ) o ‘-,v:-w.}’."l' = DTy,
Vs r-.lu‘}rr - 'ﬁ-.lu:-.lu’- i1

Then, left eigenvectors [,,, := IlIr,, exists and using spectral decomposition,

> At (i)7(5)0m ()

m=1

= D AmIm(Bln(d).

m=1

T = ) Jarmln. > NEXT

m=1

T( )

[1] J. Chem. Phys., 2011, 134, 174105.
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Tasting the Transition Probability Matrix : What is the other eigenvalues / eigenvectors,

not its eigenvalue = 1?

B Using the spectral decomposition of T matrix, We can derive the convergence of any
Initial state p, to state

Lemma 6. Let T be the transition matriz of an wrreducible, aperiodic and re-
versible Markov chain. Then, for any initial distribution pg, we have:

lim pp = .
b—oo

Proof. The eigenvalue decomposition of T yields:

pi = piTk
= Pg ZAﬁirmEx}

I
e
s
i3
g
#
3
3—

m= * Second Implied timescale
i 1
= TT-I— Z ‘}‘ﬁl{p[]!rm:‘lgl' f'z = _IDE;{)'I.Q]II'

[1] J. Chem. Phys., 2011, 134, 174105.
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Tasting the Transition Probability Matrix : What is the other eigenvalues / eigenvectors,

not its eigenvalue = 1?

| 0 .
z D *
2 i _ 08 * 48
@ ' ~
3 Ec 2 06 1196
=1
§ % g 04 100
2 E=11]
o g B i
g = 02} T 162
: T Te
z A 0.0 LI_.._....[}
2 0.0 Probabilities  0.12 (e) 1 2 3 4 5 El- '.I‘ E 9 12
£ 1E
® | A 25 B 50 C 75 D 100 Index i
(@) Transitton 10
5 -} 1 ) i |
-5 =
] é‘ ?:a
< 3
< 5 ) ) )
Eigenfunction points to the

1 A 25 B s0 C 75 D 100

() location of metastable states

; (right)

[1] J. Chem. Phys., 2011, 134, 174105.

Implied timescale
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Transition Path Theory : First time to meet “Committor”

B Transition Path Theory (TPT) : Find the paths between state A and B!

B Hitting Probabilities and Committors

Hy = min{k>0: X, € A}, : Hitting time of a set A
ha(i) = Pi(Ha(i) <o0).:the corresponding hitting probability which starts at state i

B Forward committor : the probability to hit set B next rather than A.

G = Pi(Hp < Hy)
1, e B |
g& = <0, icA "

> =1 Tijqj, otherwise.

B Backward committor : the probability to come from A rather than from B.

. ‘ﬁ o T ?-____.-- = "'x\
% e s .//‘;"'"'@/,\(:--t N
- . 4 - o 1 h
1

q; = 1, i e A P P ST T j

'.“l.-
n — . | A S | [ B |
Zj=1 Tisq;, otherwise. M AT J
% "“ 'J Y - !
S = \ g
T L B e

[1] Multiscale Model. Simul. 2009, 7, 1192— 1219 24



Transition Path Theory : First time to meet “Committor”

B Fluxes and Transition Rates can be calculated by forward/backward committors.

M Probability current between states | and J ;"

(Effective probability current : f;?

M Average total number of trajectories: FAB
L. FAB
M transitionrate: x4, = ——— .
2 jes Tid;

B MFPT : the inverse of the transition rate : T74p

B Finding dominant pathways:

Let) w = (i, iy, ..., ig) : Simple reaction pathway (i, €

A iy € B,iy,...,ix_1 € (AU B)°)

— HRap

c{w) = min :?',

Bl Min-current (=capacity): T
2.0 jEw

Fﬁﬁ';Tijﬁ';: i#]
0, otherwise.

max (727 — £27,0))

- Yy

1€EA JES

1

=>» Edge (i,j) where minimum current occurs : bottleneck
=>» Bast pathway : one which maximizes the min-current

[1] Multiscale Model. Simul. 2009, 7, 1192— 1219
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Takeaways

The most important property of markovian process is “MEMORYLESS”.

After we set the TPM of MSMs, we can calculate many thermodynamic & kinetic quantities.

Unlike our expectations, It is difficult to satisfy memoryless property.

To describe non-markovian process, we can use other sophisticated methods, like GME.

Transition Path Theory (TPT) offers the theoretical frame : How to interpret

By using TPT, we can calculate MFPT, best pathway, .. Etc.
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Q&A
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